Computer Science Location: Link Lab 211
Add to Calendar 2019-09-18T14:00:00 2019-09-18T16:00:00 America/New_York PhD Defense Presentation by Elahe Soltanaghaei Title: Sensing the Physical World Using Pervasive Wireless Infrastructure   Abstract: Link Lab 211

Title: Sensing the Physical World Using Pervasive Wireless Infrastructure



WiFi connectivity is ubiquitous nowadays, specially in the new era of Internet of Things (IoT), where majority of physical devices, home appliances, and vehicles have some kind of network connectivity. On the other hand, recent developments in wireless technologies have trans- formed the role of wireless signals from a pure communication medium to an enabling tool for non-intrusive sensing. More specifically, radio signals propagate along multiple paths and reflect back from objects before arriving at a receiver, so they carry information from the environment. In this thesis, we exploit the traditionally challenging multipath propagation and convert it into an opportunity for human sensing, device localization, and object tracking by mapping each wireless reflection to relevant physical and behavioral measurements. Beyond leveraging the pervasive wireless infrastructure in favor of scalability in sensing, the major breakthrough enabled by this thesis is an innovative approach termed unilateral sensing, in which a single WiFi device unilaterally senses the physical world without requiring coordination or data sharing with any other devices. This, in turn, converts every WiFi-enabled device into an individual sensor that learns about the environment.

This dissertation delivers four fundamental contributions. First, it presents a novel localization approach called Multipath Triangulation, which combines the geometric properties of wireless multipath signals to triangulate WiFi devices and reflection surfaces. Next, the multi- path triangulation is exploited to produce the first decimeter-level unaided localization system that requires only a single WiFi receiver to unilaterally locate any other WiFi devices in the room. Beyond localizing WiFi devices, we introduce the first WiFi-based object tracking system that can localize the passive wireless reflections from a battery-free tag in the presence of complex multipath propagations. Finally, we introduce a new concept of peripheral WiFi vision, which enables sensing the presence of people in a room, even if they are stationary, without requiring them carry any devices or wear a tag.

To deliver these contributions, we employ the underlying physical properties of wireless multipath propagation, and map the frequency, temporal and spatial characteristics of these signals to the physical environment. We implement new systems and algorithms that are compatible with commodity WiFi devices, which are also evaluated in regular indoor environments. A broad range of applications benefit from this sensing information including health and elderly monitoring, home automation and security, emergency rescue, and so on. 


Kamin Whitehouse (Advisor); John Stankovic (Chair); Madhur Behl; Robert M. Weikle; Steven Bowers (Minor Representative)