

Project Summary

Feb. 2014

Prepared for the Cooperative Transportation Systems Pooled Fund Study

Prepared by: Kimley-Horn and Noblis

Traftic ivianagement Centers

In a Connected Vehicle Environment

Cooperative Transportation Systems Pooled Fund Study Overview

- <u>"Program to support the development and deployment of</u> <u>Cooperative Transportation Systems Applications"</u>
- Goals
 - To facilitate the development and evaluation of Connected Vehicle applications
 - To prepare state and local transportation agencies for the deployment of Connected Vehicle technologies
- Program Status (<u>http://cts.virginia.edu/CTSPFS_1.html</u>)
 - Phase I (July 2009 August 2012)
 - Phase II (September 2012 December 2014)
 - Phase III will begin from January 2015
 - PFS Dynamic Mobility Application Project: Multi-Modal Intelligent Traffic Signal Systems Phase I and II (October 2011 – June 2015)

Traftic ivianagement Centers

In a Connected Vehicle Environment

Current PFS Membership

- Core/Voting Members
 - Virginia, California, Florida, Michigan, Minnesota, New Jersey, New York, Pennsylvania, Texas, Utah, Washington, Wisconsin, Maricopa County and FHWA
 - VDOT is lead agency with technical/administrative support from UVA
- Associate Members
 - Palm Beach Co, FL; Oakland Co, MI; MTC (Bay Area), Transport Canada, Rijkswaterstaat and North Texas Toll Authority
- Liaisons
 - NCHRP/SHRP 2; AASHTO (strategic and deployment plans)

Project Team

- Cooperative Transportation Systems Pooled Fund Study
 - Melissa Lance (Virginia Department of Transportation)
 - Hyungjun Park and Brian Smith (University of Virginia)

Project Team

- Kimley-Horn and Associates, Inc.
- Noblis
- DGD Enterprises

Future TMCs....

- What are the potential impacts of CV on transportation management centers?
 - New operational capabilities
 - New data sources
 - Key considerations
 - Staffing and required skills
 - o How will operations change?
 - Policy and institutional issues

How can TMCs ready for a future CV environment?

Project Overview

- February 2013 December 2013
- Outreach to a variety of TMCs throughout country
- Wide net approach to input; focused interviews with candidate states
- Ongoing coordination with Panel and PFS
- Other related efforts
 - Overall Connected Vehicle Research Program
 - Footprint Analysis
 - Connected Vehicle Reference Implementation Architecture
 - Multiple test beds

Key Tasks and Deliverables

Task	Deliverable		
Task 1	Connected Vehicle Program Activities in Relation to TMC Operations (Technical Working Paper)		
Task 2	Expected Changes in TMCs – Concept Paper and Summary		
Task 3	Operational Concept for Future TMCs in a Connected Vehicle Environment		
Task 4	Final Recommendations		

All deliverables are located at: <u>http://cts.virginia.edu/CTSPFS_2.html</u>

Task 1 – Review CV Program Activities in Relation to TMC Operations

- Current data capabilities (real-time) and TMC operating environments
- TMC perspective on priority CV apps
- Potential benefits and impacts of CV on TMCs
- Survey and interviews

Survey

- Total of 16 completed
- Awareness of connected vehicle research
- Multi-source data
- How connected vehicles would enhance, expand or impact TMC operations
 - Staffing/skill set needs
 - Policy and legal considerations
 - Systems and networks
- Basis for more detailed interviews

TMC Coverage Areas

Real-Time Data from Other Sources

Priority CV Application Areas

Primary focus: Enhance Core Functions, Expand Situational Awareness (arterials)

- Incident Detection (11)
- Probe Data Collection Vehicle position, speed, and heading (10)
- Arterial Management Advanced Traffic Signal Systems (e.g. leveraging connected vehicle data to support traffic signal operations including adaptive traffic signal systems) (8)
- Traveler Information Traffic Conditions (7)
- Traveler Information Travel Times and Incidents (4)
- Safety Applications (CICAS) Signal/Stop Sign Violation (3)

How TMCs Prefer to Acquire Data

TMC Interviews

- In person Detroit and Arizona
- Telephone Florida and Virginia
- Common Themes:
 - Incident information, verification, system recovery
 - Situational awareness, decision making
 - Would complement agency data, not replace
 - Better information to travelers
 - Support for dynamic strategies (ICM and ATM)
 - Excited about data potential addressing today's data gaps

Challenges

- CV activity and testing has not reached the TMCs
- What can be demonstrated (cost/benefit) for TMC with limited number of vehicles?
- First focus is on issues with field infrastructure
- Mixed response regarding staffing impacts
- Unknowns on data management issues, communications capability
- Agency IT environment and relationships

Traftic ivianagement Centers

Potential Impacts

- Avoiding TMC operator 'data overload'
- Will CV be viewed as 'verified' data?
- Rapid technology lifecycle turnover
- Managing data
- Ability for legacy equipment to support new technologies
- Ability to transition to new field and TMC equipment
- Software and operating system capabilities to support multi-source data environment

Task 2 – Investigation of Expected Changes in TMCs

- Current status and functions of TMCs
- Trends Impacting TMCs
 - Proactive and integrated operations programs
 - Mobile communications and multi-source data
 - Advances in wireless network capabilities
 - Traveler information and social media
 - Performance management
 - TMC staffing and skill sets
- Description of the Connected Vehicle Environment

Aligning with Service Packages

- Incident Management
- Roadway Hazard Warnings
- Speed Monitoring and Warning
- Cooperative Intersection Collision Avoidance Systems (CICAS)
- Traffic Signal Control
- Probe Data Collection
- Traffic Metering
- Lane Management

- Electronic Payments / Fee Collection
- Traffic Information Dissemination
- Emissions Monitoring and Management
- Road Weather Monitoring and Management
- Asset Management
- Parking Management
- Performance Measures*

Service Package Assessment

Potential Connected Vehicle Applications

Incident Detection

- **Incident Warnings**
- Advanced Automatic Crash . Notification Relay
- **Emergency Communications** ٠ and Evacuation
- Incident Scene Pre-Arrival . Staging for Emergency Responders
- Incident Scene Work Zone Alerts for Drivers and Workers
- **Emergency Vehicle Alerts**

Potential Changes to TMC Operations

- Available data
- **Decision support**
- Incident response from TMC
- **Disseminate information**
- Ongoing automated updates

Expected Changes

- Change to the TMC data environment "Big Data"
 - Enhancements needed to store, process, retrieve, and present data
 - New opportunities for working with third party data providers and clearinghouses
- Development of software modules and algorithms to support CV applications
 - Automating processes and information processing for TMC operators
- Customer expectations in a CV environment will change
- Deployment, maintenance and operations of roadside equipment (RSE) units
 - A transition period will exist in the near and mid-term
- Integration of CV infrastructure and data into existing ATMS
- Connecting to the Core System
- Training for TMC operations and maintenance staff

Task 3 – Future of TMCs in a Connected Vehicle Environment

- Develop some operational concepts
- No single path for all TMCs
- Data environment single biggest change

New Data Types and Processes

Data/Information Category	Typical Data/Information Currently Available	Data Environment enabled by Connected Vehicles	Potential Changes to TMC Operations and Processes
Incident	 Location Start time/end time Duration Severity 	 Geo-locating capability for precise incident location Real-time and specific impacts to network Lanes restricted Types of vehicles involved Response status Condition of potential detour routes 	 Respond better to scene with the right resources and the right equipment Network management to support incident impact mitigation Real-time information on incident clearance Improved traveler notifications on nearby corridors Before-and-after analysis to determine cause/improvements Improved predictive modeling

Growth in Data and Responsibility in a CV Environment

TMC Functions and Potential Changes

Functions	Current Processes	CV Data Introduced	Changes to TMC Ops Processes
Traffic Management	 Updating signal timing periodically or aswarranted Monitor / use camera images Provide notification (in some form) 	 Traffic violations Hazard alerts Continuous lane by lane detection of volumes and congestion Density context Back of queue and flush rate Pavement conditions Network impacts Vehicle metrics Forecasting Prediction of impacts 	 Greater accuracy in signal control analysis Signal timing updates responsive to traffic patterns System-wide vehicle priority Responsive traffic metering Lane management Lighting control systems Parking availability information Safe speed warnings Intersection control and warnings Continuous dynamic roadway warnings

New/Expanded Functions at TMCs

- Asset Management
- IT Network Management
- Non-Typical Infrastructure Monitoring (bridges, tunnels)
- Real-time performance analysis

Data Management/Big Data

- New tools needed, old tools retired...
 - Acquisition and storage
 - Marshaling (raw data to usable information)
 - Analysis and analytics
 - Action tools enhancements to current systems
- Systems and Data Management Issues
 - Big Data Tools
 - Communications and Computing
 - <u>Regional Organization and Partnerships</u>
- Task 3 Deliverable Table 4

Staffing Skill Set Needs

- Information Technology and Data Management
- System Analytics and Processing
- Network and Device Maintenance
- Operations Engineering Decision Making

Summary of Recommendations

- "Day 1" not certain
 - NHTSA decision finalized going forward
 - Footprint looking at ~2020
 - Near-term apps
 - What will emerge in the meantime??
- All things are pointing to a more robust data environment (CV, AV, other)

TMC Operational Readiness

- Geographic Scale of the Transportation Network (managed by the TMC)
- Device and Communications Infrastructure
- Staffing Levels and Skill Sets
- Data Storage Support
- Data Analysis
- System Functionality
- Operational Processes
- System Performance Reporting
- Institutional Support

Data Analysis					
Robust	Data analysis done by dedicated staff knowledgeable of traffic operations and engineering principles, analysis applied to enhance TMC operations and traffic management	 Invest in data mining applications or software packages that could automate data analysis for better efficient use of staff time Regular review of data analysis performed to encourage creativity and innovation in data mining and story-telling through data comparisons 			
Adequate	Data analysis by studies or planning group, not necessarily with traffic operations and engineering principles, not typically applied to real-time operations strategies	 Consider investing in data mining applications or software packages that could automate data analysis for better efficient use of staff time Training or education on types of analysis that would be beneficial to justify before-and-after investments in TMC operations, devices and communications, or system enhancements 			
Limited	No data analysis capabilities or resources to support this effort	 Identify resource to perform data analysis based on types of reporting required to justify current investments or support future investments Training or education on types of analysis that would be beneficial to justify before-and-after investments in TMC operations, devices and communications, or system enhancements 			

Trafτιc ιvianagement Centers In a Connected Vehicle Environment

TMC Role in Test Beds

- How can the myriad test beds be leveraged:
 - Impacts on operating systems
 - Impacts on processes
 - Data storage, acquisition, marshaling
- Opportunities to broaden the test bed focus to include TMCs
 - Partner with TMC PFS
 - Define requirements
 - Get software and system developers engaged

Advancing the Dialogue

- Status of national forum or Coalition (AASHTO/FHWA)
 - Other private industry IT and system developers (beyond auto OEMs)
- TMC Staffing and Resource Needs
 - Partner with TMC PFS
- Input to upcoming USDOT Guidance (2015)
- Inreach within agency
 - What other agency dept/division needs could CV data support?
 - Who are the internal and regional partners?

QUESTIONS

For More Information

All deliverables are located at: <u>http://cts.virginia.edu/CTSPFS_2.html</u>

Project Contacts

Melissa Lance, PMP Virginia DOT Melissa.Lance@vdot.virginia.gov

Hyungjun Park, Ph.D. University of Virginia hpark@email.virginia.edu

Lisa Burgess, PMP **Kimley-Horn and Associates** Lisa.Burgess@kimley-horn.com

