UCRIVERSITY OF CALIFORNIA

Motivation

Connected Vehicle applications require roadway feature representation and reference in the form of a map

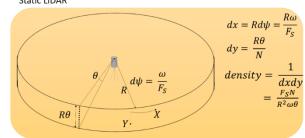
What is a Connected Vehicle(CV) Application ?

CV applications enable enhanced safety, reduces emission, and greater mobility using map referenced location and short range communication and between vehicles and roadway infrastructure

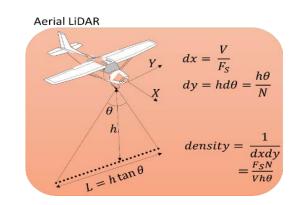
- FHWA estimates there are 300,000 signalized intersections in the US
 - Intersection models are detailed
 - Intersections are complex
- Manual survey and model construction
 would be prohibitively expensive
- Sensor based surveys are well underway, with largely manual feature extraction
- Sensor based surveys with automatic feature extraction is in its infancy

Tasks and Schedule

- Task 1: Mapping Methodology Assessment
- **Task 2: Mobile Mapping System Enhancements**
- **Task 3: Mapping Representations**
- **Task 4: Map Representation Updating**
- **Task 5: Feature Extraction Methods**


Task 6: Reporting

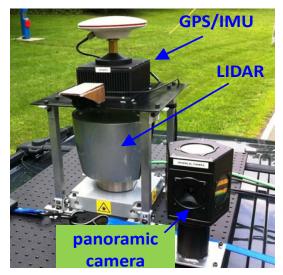
Best Practices for Surveying/Mapping Roadways and Intersections for Connected Vehicle Applications	Month 1	Month 2	Month 3	Month 4	Month 5	Month 6	Month 7	Month 8	Month 9	Month 10	Month 11	Month 12
Task 1: Mapping Methodology Assessment												
Task 2: Mobile Mapping System Enhancements												
Task 3: Mapping Representations												
Task 4: Map Representation Updating												
Task 5: Feature Extraction Methods												
Task 6: Reporting												

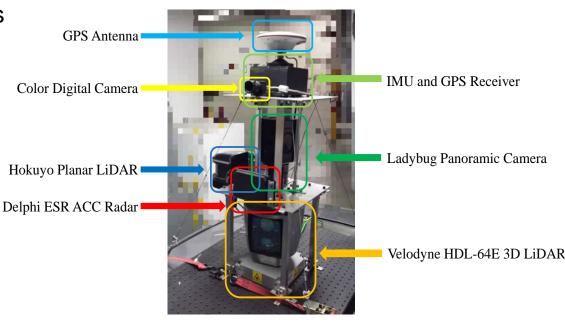


Task 1: Mapping Methodology Assessment

- Objectives:
 - Interviewing People in mapping field to study current technology
 - Recommendation of Mapping Methodology
- Implementations:
 - Interviewed people from different educational institute and business company and visiting one research laboratory
 - Performing comparative study in different Lidar technology(STLS, MTLS, ALS) and recommending MTLS method as the most suitable one
 - Information about MTLS Process, Instruments, Software
 - CV Applications: Features and Accuracy Requirements
 - Overview of recent business model

Table: Comparative Study of Different Mapping Technology

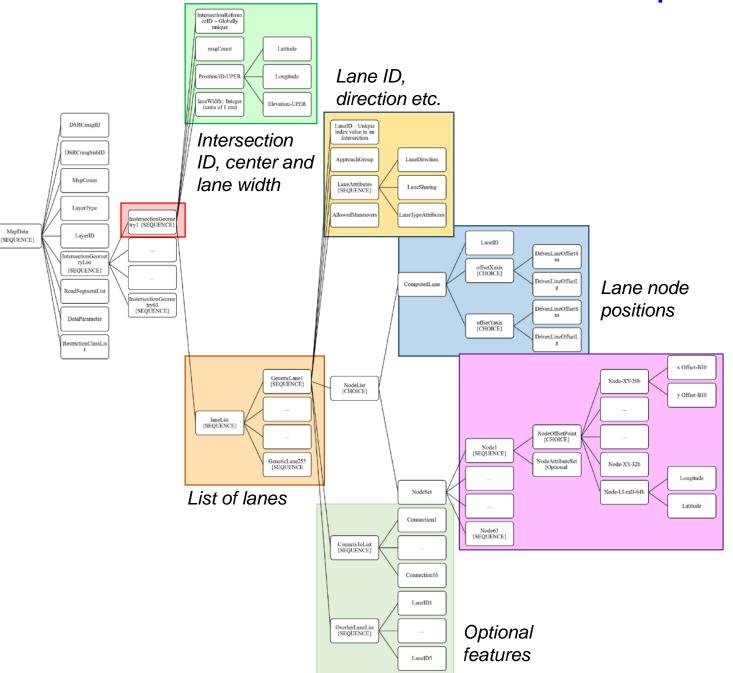


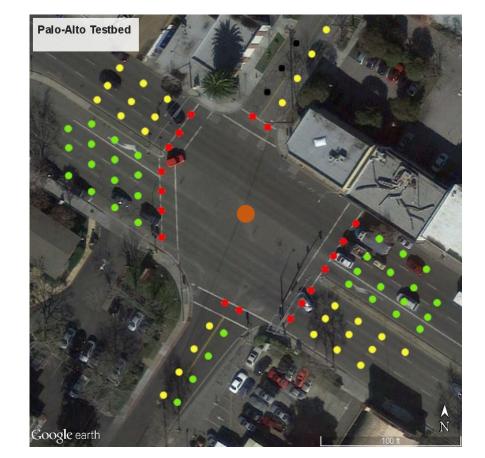

Technology	Accuracy	Feature Detection Capability(Road	Coverage	Point	
	(m/cm/sub meter level) bars)		Volume of Data	Feasibility of Map Development	Density
INS	N/A	No		×	
GNSS	cm	No		×	
Camera	N/A			×	
Lidar	N/A			×	
STLS	cm	Yes	75m × 75m	×	High
MTLS	cm	Yes	100m × Trajectory length	V	High
ALS	sub meter	Yes	150m × Trajectory length	×	Low
Crowd Source Data	m	Inferred	Full road	Detecting Map Updates	N/A

UCRIVERSITY OF CALIFORNIA

Task 2: Mobile Mapping System Enhancements

- Objectives:
 - Mobile Positioning and Mapping System
 enhancement
 - Data Collection Procedure Enhancement
- Implementations:
 - Hardware architecture aligned along vertical axis
 with sensor offset calibration
 - Streamlined software data collection sequence and improved data formatting
 - Improved wiring and sensor connections
 - Enhanced data collection procedures
 - Improved data integration
 - Improved base station interoperability utilizing CORS/NTRIP




Task 3: Map Representations

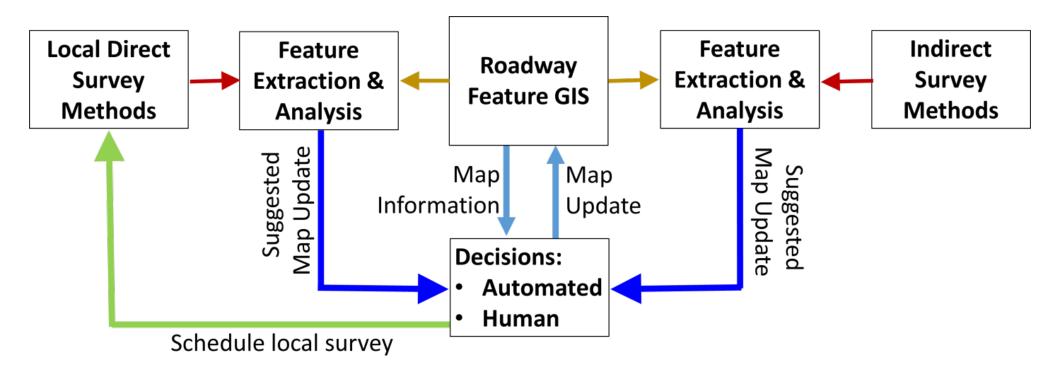
- Objectives:
 - To assess map representations that have spatial continuity, automaker uniformity, concise, transmittable and updatable.
- Conclusions:
 - For commercial success, a single global database is required with uniform contents, accuracy and behavior across geographic boundaries, infrastructure and auto manufacturers.
 - SAE J2735 currently is the only format suitable for mapping roadways as it can convey both intersection geometry maps and dynamic information (SPAT).
 - All CV demos to date have found J2735 incomplete, lacking features and modified it to fit their purpose.
 - The SAE committee is monitoring the issues and taking action to make it a complete mapping standard.

Overview of J2735 Map Data

UCRIVERSITY OF CALIFORNIA UCRIVERSITY OF CALIFORNIA

Orange Node: Intersection center Red Nodes: Stop bar position Green Nodes: Ingress node positions Yellow Nodes: Egress node positions Black Nodes: Nodes with undecidable direction

Task 4: Map Representation Updating

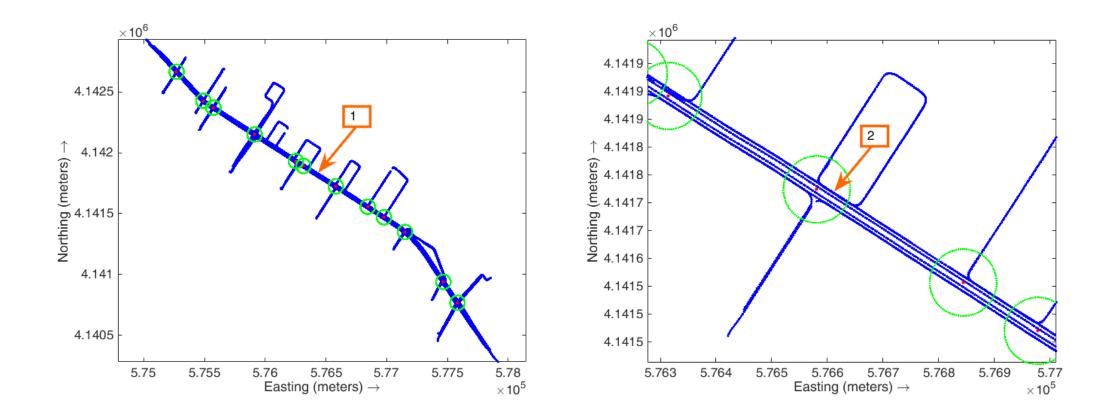

- Objectives:
 - To assess methods to detect and trigger the map updates
 - To assess methods to integrate local map updates into the map database efficiently while maintaining spatial continuity
 - To assess methods to ensure data integrity if map updates are obtained from different sources
- Primary Methods:
 - *Direct:* Involves direct detection and calibration of roadway feature locations by MTLS
 - Pros: Data have a high-level of integrity and accuracy
 - Cons: Data collection can be expensive and time consuming
 - Inferred (e.g. Crowd sourcing):
 - Accumulation of sensor trajectory data from the millions of connected vehicles and/or users driving on the nations roadways
 - Mainly useful to prompt detection of changes to the roadway infrastructure

Task 4: Map Representation Updating

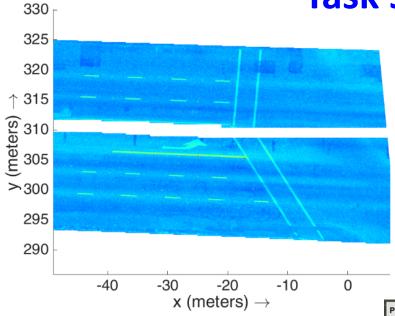
Recommendations:

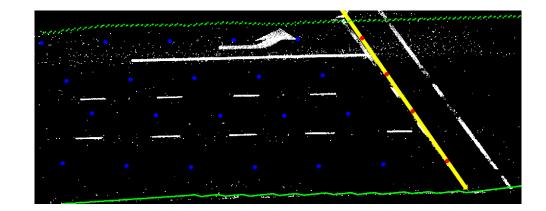
- 1. Use crowd-sourcing to detect needed updates
- 2. Use MTLS to ensure the integrity of data

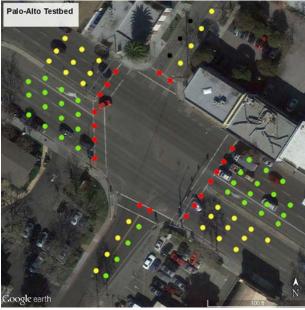
- **Objective:** Automated extraction of J2735 map message meta data from road way features:
 - Longitudinal features (e.g. Stop bar)
 - Lateral features (e.g. Lane edges)
- Primary steps:
 - 1. Preprocessing: extract the georectified point cloud and associated MPMS trajectory portions relevant to an intersection of interest
 - 2. Road surface extraction: Extract points belonging to the surface of the road where features of interest are located
 - 3. Mapping of 3D point cloud to 2D image: makes images processing tools applicable to data
 - 4. Map message metadata extraction: Automatically extract map message data (lane and stop bar node locations) and metadata (e.g., number of lanes, ingress or egress)
 - 5. ECEF Map definition: Translate metadata from pixel coordinate to world coordinates



Automation Level


Step	Function	Automation level
1	Preprocessing	Semi-automated; Some intersections need human involvement due to non-standard/complex geometry
2	Road Edge Detection	Semi-automated; Algorithm fails for some road segments due to non-standard/complex road geometry
3	Road surface extraction	Intensity threshold parameter are tuned for different road segments
4	Mapping of 3D point cloud to 2D image	Automated
5	Map message metadata extraction	Semi-automated; Some parameters are tuned for different intersections when needed to improve performance
6	2D to 3D translation of map metadata	Automated




Preprocessing

UC RIVERSITY OF CALIFORNIA

Intersectio	Intersection			Pe	rformai	Remarks				
n No	n No Type(Standar d cross,	Road Edge Ingress Branch Detection			Egress I	Branch		Ingress or Egress Branch	(Depicting the reason of automation process failed)	
	Standard T, Non-standard)		Surfac e Detec tion	Lane Edge Detec tion	Stop Bar Detect ion	Surfa ce Detec tion	Lane Edge Dete ction	Stop Bar Dete ction	Without Marking	
1	Standard cross	8 of 8	100 %	13 of 11	4 of 4	100 %	8 of 8	4 of 4	2 of 2	2 bike lanes were detected in addition to traffic lanes
2	Non- Standard cross	8 of 8	100 %	11 of 11	4 of 4	100 %	8 of 8	4 of 4		1 stop bar line has been detected and mapped at the wrong line of the pedestrian cross walk
3	Non- Standard cross	8 of 8	100 %	11 of 11	4 of 4	100 %	8 of 8	4 of 4		1 ingress lane was detected but could not be classified as ingress
4	Non- Standard cross	7 of 8	100 %	9 of 20	2 of 4	100 %	5 of 11	2 of 4		2 road segments (both ingress and egress) could not be processed due to the non- standard road geometry and faded lane striping.

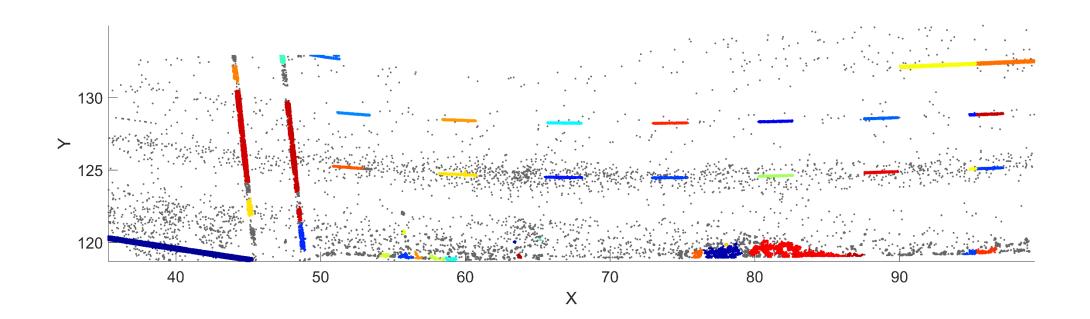
UC RIVERSITY OF CALIFORNIA

Intersectio	Intersection			Pe	rforma	Remarks				
n No	Type(Standar d cross,	Road Edge Detection	Ingress	Branch		Egress	Branch		Ingress or Egress Branch	(Depicting the reason of automation process failed)
Standard T, Non-standard)		Surfac e Detec tion	Lane Edge Detec tion	Stop Bar Detect ion	Surfa ce Detec tion	Lane Edge Dete ction	Stop Bar Dete ction	Without Marking		
5(a)	Non-standard T	6 of 6	100 %	8 of 8	3 of 3	100 %	7 of 7	2 of 3	2 of 2	 1 ingress lane could not be identified because there was no road painting. One stop bar has been detected manually because stop bar marking was absent.
5(b)	Non- Standard T	6 of 6	100 %	9 of 9	3 of 3	100 %	7 of 7	2 of 3		 1 ingress lane could not be classified because there was no trajectory information. One stop bar has been detected manually because stop bar marking was absent.
6	Non- Standard T	6 of 6	100 %	10 of 10	3 of 3	100 %	8 of 8	3 of 3		 1 misplaced stop bar is expected to be fixable in future efforts.

UC RIVERSITY OF CALIFORNIA

	Intersection			Pe	rforma	Remarks				
n No	Type(Standar d cross,	Road Edge Detection	Ingres	s Branc	h	Egres	s Branc	h	Ingress or Egress Branch Without Marking	(Depicting the reason of automation process failure)
	Standard T, Non-standard)		Surfac e Detec tion	Lane Edge Detec tion	Stop Bar Detect ion	Surfa ce Detec tion	Lane Edge Dete ction	Stop Bar Dete ction		
7	Standard T shaped	7 of 8	100 %	9 of 9	3 of 3	100 %	7 of 7	2 of 3	2 of 2	 1 ingress lane could not be identified because there was no road painting. One stop bar has been detected manually because stop bar marking was absent. 1 misplaced stop bar is expected to be fixable in future efforts.
8	standard T	6 of 6	100 %	9 of 9	3 of 3	100 %	7 of 7	2 of 3		 The absence of the painted stop bar on the road surface causes human interaction for that stop bar 1 egress lane could not be classified because there was no trajectory information.

Intersectio	Intersection			Pe	rforma	Remarks				
	Type(Standar d cross,	Road Edge Detection	Ingres	s Branc	h	Egress	s Branc	h	Ingress or Egress	(Depicting the reason of automation process failure)
	Standard T, Non-standard)Surfac EdgeLane EdgeStop BarSurfac CeLane EdgeStop BarBranch Without Marking	Branch Without								
9	Non- Standard cross	4 of 8	100 %	6 of 13	2 of 4	100 %	4 of 8	2 of 4		 2 road segments (both ingress and egress) could not be processed due to the non- standard road geometry. 1 ingress lane could not be identified because there was no trajectory information
10	Non- Standard cross	6 of 8	100 %	9 of 11	3 of 4	100 %	7 of 9	3 of 4		 2 road segments (both ingress and egress) could not be processed due to the non- standard road geometry.
11	Standard cross	8 of 8	100 %	4 of 14	1 of 4	100 %	0 of 9	0 of 4		 2 road segments (both ingress and egress) could not be processed due to the non- standard road geometry.


Extended Research: Enhanced Automation

- **Objective:** Extract map message metadata directly from point cloud to preserve the accuracy of point cloud.
- Primary steps:
 - Outlier Removal: Outliers on the surface of the road point cloud are identified and removed based on intensity threshold techniques
 - *Cluster Analysis*: The point cloud is clustered using graph-based clustering techniques
 - *Feature Classification*: Clusters are classified based on topology, orientation and other characteristics and merged into features of interest
 - Map message metadata extraction: Map message metadata is automatically extracted from features

UCRIVERSITY OF CALIFORNIA

Extended Research: Enhanced Automation

- Automated local threshold selection
- Automated cluster (lane marker) detection based on intensity and distance based clustering

Future Research Recommendations

- Algorithmic Improvements:
 - Improve robustness
 - Enhance automation
 - Additional roadway map features
- Hierarchical map representations incorporating: intersections, roadways, ramps, highways
- Integrate crowd-sourced information and MTLS
 - Detecting need for map updating
 - Merging Data from diverse sources
 - Maintaining consistency of data across map layers and geographic boundaries
- Improve understanding of positioning requirements for CV and AV applications
- Collaborations with CV demos and testbeds involving mapping
- Enhancement of mapping data standards and methods