Published: 
By  Josh Barney
UVA Medical Center
Among the past and present students who contributed to the new UVA Health tool are current UVA Computer Science Ph.D. students Steven and Josephine Lamp, and UVA mathematics and computer science alumna Yuxin Wu. Lu Feng, an associate professor of computer science, and systems and information engineering, also contributed to the research. See the full list of authors below. (UVA Health photo)

UVA Health and UVA Engineering researchers have developed a powerful new risk assessment tool for predicting outcomes in heart failure patients. The researchers have made the tool publicly available for free to clinicians. 

The new tool improves on existing risk assessment tools for heart failure by harnessing the power of machine learning and artificial intelligence to determine patient-specific risks of developing unfavorable outcomes with heart failure. 

“Heart failure is a progressive condition that affects not only quality of life but quantity as well," researcher and heart failure expert Sula Mazimba, MD, said. "All heart failure patients are not the same. Each patient is on a spectrum along the continuum of risk of suffering adverse outcomes. Identifying the degree of risk for each patient promises to help clinicians tailor therapies to improve outcomes.” 

About Heart Failure 

Heart failure occurs when the heart is unable to pump enough blood for the body’s needs. This can lead to fatigue, weakness, swollen legs and feet and, ultimately, death. Heart failure is a progressive condition, so it is extremely important for clinicians to be able to identify patients at risk of adverse outcomes.  

Further, heart failure is a growing problem. More than 6 million Americans already have heart failure, and that number is expected to increase to more than 8 million by 2030. The UVA researchers developed their new model, called CARNA, to improve care for these patients. (Finding new ways to improve care for patients across Virginia and beyond is a key component of UVA Health’s first-ever 10-year strategic plan.) 

It is really exciting because the model intelligently presents and summarizes risk factors, reducing decision burden, so clinicians can quickly make treatment decisions.

 

Josephine Lamp
Josephine Lamp

The researchers developed their model using anonymized data drawn from thousands of patients enrolled in heart failure clinical trials previously funded by the National Institutes of Health’s National Heart, Lung and Blood Institute. Putting the model to the test, they found it outperformed existing predictors for determining how a broad spectrum of patients would fare in areas such as the need for heart surgery or transplant, the risk of rehospitalization and the risk of death.  

The researchers attribute the model’s success to the use of machine learning/AI and the inclusion of “hemodynamic” clinical data, which describe how blood circulates through the heart, lungs and the rest of the body.  

“This model presents a breakthrough because it ingests complex sets of data and can make decisions even among missing and conflicting factors,” said researcher Josephine Lamp of the University of Virginia School of Engineering’s Department of Computer Science. “It is really exciting because the model intelligently presents and summarizes risk factors, reducing decision burden, so clinicians can quickly make treatment decisions.”

By using the model, doctors will be better equipped to personalize care to individual patients, helping them live longer, healthier lives, the researchers hope. 

“The collaborative research environment at the University Virginia made this work possible by bringing together experts in heart failure, computer science, data science and statistics,” said researcher Kenneth Bilchick, MD, a cardiologist at UVA Health. “Multidisciplinary biomedical research that integrates talented computer scientists like Josephine Lamp with experts in clinical medicine will be critical to helping our patients benefit from AI in the coming years and decades.”  

Findings Published

The researchers have made their new tool available online for free at https://github.com/jozieLamp/CARNA.

In addition, they have published the results of their evaluation of CARNA in the American Heart Journal. The research team consisted of Lamp, Yuxin Wu, Steven Lamp, Prince Afriyie, Nicholas Ashur, Bilchick, Khadijah Breathett, Younghoon Kwon, Song Li, Nishaki Mehta, Edward Rojas Pena, Lu Feng and Mazimba. The researchers have no financial interest in the work.

The full UVA Health press release can be found here.